PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature
نویسندگان
چکیده
In this study, we successfully prepared nine non-woven, supported polyvinylidene fluoride (PVDF) membranes, using a phase inversion precipitation method, starting from a 15 wt % PVDF solution in N-methyl-2-pyrrolidone. Various membrane morphologies were obtained by using (1) PVDF polymers, with diverse molecular weights ranging from 300 to 700 kDa, and (2) different temperature coagulation baths (20, 40, and 60 ± 2 ◦C) used for the film precipitation. An environmental scanning electron microscope (ESEM) was used for surface and cross-section morphology characterization. An atomic force microscope (AFM) was employed to investigate surface roughness, while a contact angle (CA) instrument was used for membrane hydrophobicity studies. Fourier transform infrared spectroscopy (FTIR) results show that the fabricated membranes are formed by a mixture of TGTG’ chains, in α phase crystalline domains, and all-TTTT trans planar zigzag chains characteristic to β phase. Moreover, generated results indicate that the phases’ content and membrane morphologies depend on the polymer molecular weight and conditions used for the membranes’ preparation. The diversity of fabricated membranes could be applied by the End User Industries for different applications.
منابع مشابه
Poly (Vinylidene Fluride) Membrane Preparation and Characterization: Effects of Mixed Solvents and PEG Molecular Weight
In this study, polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc), which had different affinities with the nonsolvent (water). Properties of the prepared membranes were characterized using scanning electron microscope (SEM) and contact angle and membrane p...
متن کاملEffect of Different Additives on Separation Performance of Flat Sheet PVDF Membrane Contactor
This paper investigates effects of different additives on morphology and subsequently, separation performance of asymmetric flat sheet Polyvinylidene fluoride (PVDF) membranes to separate CO2 using membrane contractor. Five different additives from different chemical families including Lithium chloride (salt), Polyethylene glycol 400 (polymer), glycerol (weak anti-solvents), methanol...
متن کاملApplication of Salt Additives and Response Surface Methodology for Optimization of PVDF Hollow Fiber Membrane in DCMD and AGMD Processes
In this study, the influence of the salts as an additive on the performance of the membrane was investigated and an extensive work was performed to optimize PVDF hollow fiber membranes through a response surface methodology (RSM). The prepared membranes were characterized by SEM, contact angle and LEP measurement. Then, the RSM was used for the optimization of surface pore size, porosity and hy...
متن کاملHydophilic polypropylene microporous membrane for using in a membrane bioreactor system and optimization of preparation conditions by response surface methodology
In this study, the response surface methodology (RSM) based on the central composite design (CCD) was used to optimize the preparation condition of polypropylene-grafted maleic anhydride (PP-g-MA) microporous membrane by thermally-induced phase separation (TIPS) method. A mixture of dibutyl phthalate (DBP) and dioctyl phthalate (DOP) was used as diluent. The effect of polymer composition and qu...
متن کاملPreparation of microporous poly(vinylidene fluoride) membranes via phase inversion in supercritical CO2
Microporous poly(vinylidene fluoride) (PVDF) membranes were prepared from PVDF/N,N-dimethylacetamide (DMAC) solutions by using upercritical CO2 phase inversion process. As revealed by scanning electron microscope (SEM) and differential scanning calorimeter (DSC), he PVDF membranes exhibit morphological characteristics resulting from both liquid–liquid phase separation and crystallization, i.e.,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017